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Received 18 September 1984 

Abstract. Improved Monte Carlo methods have been used to study the asymptotic behaviour 
of self-avoiding walks on two-dimensional lattices. The mean-square end-to-end distance 
R’,, and radius of gyration S i r  are both found to scale as N2‘ with exponent values very 
close to the expected U = and an amplitude ratio that is universal. Small-N deviations 
of R’, from the asymptotic results indicate a correction to scaling exponent A = I ,  a value 
that differs from previous estimates. 

Although the two-dimensional self-avoiding walk (SAW) remains an unsolved problem 
a recent analytical argument (Nienhuis 1982) showed that the scaling exponent v 
governing the asymptotic length dependence of the mean-square end-to-end distance, 

R’, - AN’” ( 1 )  

( N  is the walk length), has a value f .  The argument, though plausible, is not completely 
rigorous. A variety of numerical techniques-series expansions (Majid et a1 1983, 
Djordevic et al 1983), Monte Carlo (MC)  (Havlin and Ben-Avraham 1983, Meirovitch 
1983), renormalisation group (RG) (Le Guillou and Zinn-Justin 1980), real space 
renormalisation (Derrida 198 1, Redner and Reynolds 198 1 )-have produced estimates 
of v with varying degrees of confidence and precision; though most favour v = f there 
are exceptions. 

Once the dominant asymptotic behaviour ( 1 )  has been determined, the problem of 
estimating the leading-order correction term becomes somewhat more tractable. 
Numerical analysis-series (Djordjevic et a1 1983, Privman 1984), MC (Havlin and 
Ben-Avraham 1983), RG (Le Guillou and Zinn-Justin 1980)-have so far failed to 
reach agreement on the value of the correction term exponent. 

In this letter we describe the results of a new MC treatment of the d = 2  problem. 
An improved MC technique has allowed the generation of larger samples of long walks 
than previously possible, with the consequent improvement in the reliability of the 
results. The key conclusions of the study may be summarised as follows: The numerical 
v is extremely close to the ‘exact’ value, a result which establishes the accuracy of the 
MC method itself-important because it has also been used for d = 3 and 4 (Rapaport 
1984a, b). Furthermore, the same value of v applies to the mean-square radius of 
gyration S’, as well. The value of v is lattice independent, as is the N 4 00 limit of 
the ratio R’,/ S’, (or equivalently, the amplitude ratio). Finally, the leading-order 
correction term for R’, is proportional to N’“-’ ,  a result not in accord with earlier 
numerical work. The present treatment of corrections differs from its predecessors in 
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that the quality of the MC data permits, for the first time, total separation of the 
correction term calculation from that of the leading-order behaviour. 

The MC method used for SAW generation has been described in detail elsewhere 
(Rapaport 1985a); it is based on the well known enrichment technique (Wall et a1 
1963), but is significantly enhanced by the fact that instead of constructing the walks 
by adding a single step at a time, as in the original scheme, it operates by combining 
members of previously generated sets of shorter walks. The method allows the construc- 
tion of SAWS of sufficient length to be well into the asymptotic region while at the same 
time not biasing the sample in any way; the efficiency of the algorithm permits the 
use of large sample sizes to reduce the statistical spread of the data. 

The measured values of R’, and Sk for walks of length up to 2400 steps on the 
triangular (TRI)  and square (SQ) lattices are listed in table 1 ; each value represents the 
average of 45-50 x lo3 separate SAW realisations. The confidence limits associated with 
these values are determined by partitioning the walks into eight groups and computing 
the spread of the group means; the resulting standard deviations of the mean for each 
lattice amount to 0.6% (R’,) and 0.4% (S’,) of the means themselves. 

Table 1. Measured values of R$ and SL. 

TRI 120 944.4 132.23 
300 3692.7 518.97 
600 10 568.4 1479.15 

1200 29 642.2 41 54.40 
2400 82 610.0 I 1  725.16 

SQ 160 1579.3 221.07 
320 4446.6 623.33 
640 12 466.6 1751.32 

1200 31 923.1 4503.13 
2400 90 963.2 12 740.28 

The scaling exponent v appearing in ( 1 )  is obtained by linear regression analysis 
of log R’, against log N, and similarly for Sk. The values of v thus derived are 0.7488 
(R’,), 0.7489 (Sk)  for the TRI lattice, and 0.7479 ( R k ) ,  0.7484 (Sk) for the SQ; error 
estimates produced by the regression analysis amount to *0.0010 (R’,) and 
*0.0006 (Sk). In each case the fit of the asymptotic result is so close that the average 
relative deviation of the data points is only 0.4% ( R k )  and 0.2% (SL), less than the 
uncertainties in the data; deviations of this magnitude are barely apparent when the 
data is graphed. The values obtained for v all lie approximately 0.2% below f ;  the 
most probable cause of this minor deviation is the residual effect of the leading-order 
correction terms (see below) which, for N > 100, disappear into the statistical noise. 

The fit to the asymptotic form can be repeated with the requirement v =$ The 
quality of the fit is only slightly worse than before, with average deviations of 0.5% ( R k )  
and 0.4% (SL), values that are still no greater than the uncertainty of the data. The 
resulting estimates of the amplitude A are 0.7145 * 0.0036 (R’,), 0.1002 f 0.0004 (S’,)  
for the TRI lattice, and 0.7739 f 0.0048 (R’,), 0.1086 * 0.0004 (Sk) for the SQ (the values 
are quoted to four significant figures to permit reproduction of the results but the last 
digit is not intended to be taken seriously): the small errors are again an indication 
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of the closeness of the fit. The N+m limit of the ratio R’,/SL, i.e., the ratio of the 
corresponding amplitudes, is equal to 7.131 (TRI) and 7.126 (sQ); the difference is 
below 0.1% and is strong indication that the amplitude ratio is a universal (lattice 
independent) quantity (Domb and Hioe 1969). 

In order to study the corrections to scaling a series of shorter SAWS were generated 
by means of the same MC method; the lengths lay in the range N = 12-60 (increments 
of 6) for the TRI lattice and N = 16-80 (increment 8) for the SQ. The size of each 
sample was increased to 2 x IO5 walks to further reduce the statistical error. The relative 
deviations of the measured R’, and S’, from the leading-order asymptotic predictions 
(( 1 )  with v = and appropriate amplitudes) are shown in figure 1 plotted against N-I. 
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Figure 1. Relative deviations of measured R L  and S’, from the leading order asymptotic 
predictions with U = f .  The symbols 0 and 0 denote R’, and S’, deviations on the TRI 
lattice, W and 0 on the SQ lattice. The straight lines correspond to the N - ’  correction (2) 
with coefficients 0.6 (TRI) and 0.8 (sQ). The error bars show the RMS spread of the group 
means. 

It is immediately apparent that the straight lines included in the graph fit the R’, 
data to well within the error limits. If the generalisation of (1) to include the leading- 
order scaling correction is 

R’, - AN2”(  1 + B N - l +  O( K2) )  (2) 

then the relative deviation is simply B N - ’ + O ( N - 2 ) .  The results for R’, not only 
support (2) but also reveal that the N-* correction is negligible down to very small 
N. The straight lines themselves are drawn to give a good visual fit; they correspond 
to B =0.6 (TRI) and 0.8 (sQ). The average deviation from (2) is only 0.1%; this is 
significantly less than the spread of the values themselves (0.7%) when averages based 
on partitioning the data into 20 groups are computed. 

A similar linear fit for the S’, deviation is not possible, as is clear from the figure. 
An enlarged N-’ correction term could account for the curvature, but the reliable 
estimation of its coefficient together with that of the N-l term is not possible from the 
available data. A similar situation is encountered (Rapaport 1985b) when analysing 
series expansions for R’, and S’, by fitting to (2>-R’, produces better converged 
estimates than S’,. 

The discrepancies between the exact series values of R’, and the MC estimates (or 
equivalently the asymptotic expressions) are small, and lie well within the limits set 
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by statistical uncertainty. On the TRI lattice typical differences are 0.1 '/o and 0.2% for 
N = 12 and 19 respectively; these represent a substantial improvement over the 1 '/o 

and 0.8% differences obtained using a proposed (Djordjevic e? a1 1983) alternative to 
(2) involving a correction term of form N-" with A = f .  At N = 20 on the SQ lattice 
(Martin and Watts 1971) the difference is only 0.1%, although it increases to 0.4% by 
N = 12 (the MC data are for N s  16) because of the contribution of higher-order 
corrections. 

The fact that (2) provides a better than adequate fit to the R', data suggests that 
attempts (Djordjevic e? al 1983, Privman 1984) at series analysis assuming an additional 
N-A correction term with A <  1 are not warranted. An analysis (Rapaport 1985b) of 
the TRI lattice series for R',, now extended as far as N = 19, confirms this conclusion- 
equal if not better convergence is obtained using the unembelished version of (2). A 
similar state of affairs exists in three dimensions as well (Rapaport 1985a). 

The motivation for introducing correction terms with A #  1 stems from the RG 

prediction (Le Guillou and Zinn-Justin 1980) A =  1.2; confidence in this particular 
value is not high because the same RG method predicts that v = 0.77-hence the proposal 
(Djordjevic er a1 1983) that A = f. The present analysis cannot of course rule out a 
value of A close to unity (a  similar problem arises for the SAW generating function-see 
Adler (1983) and Guttmann (1984) for conflicting points of view), although there is 
no evidence that a value A # 1 is required. If, however, A exceeds unity, the N-' term 
becomes the leading-order correction; this term cannot be seen by the RG since it is 
associated with the analytic (as opposed to the singular) parts of the SAW generating 
functions (Rapaport 1985). A recent MC analysis (Havlin and Ben-Avraham 1983) 
that observed the RG value of A neglected the existence of the N - '  correction and 
obtained a negative leading-order correction term, a result clearly incompatible with 
the present work; the fact that the result was not obtained by direct measurement of 
R', but was based on additional assumptions concerning SAW behaviour is the probable 
explanation of the disagreement. 
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